Testing Modular CMLD Representation in GE PSLF (Revised)

WECC MVS Meeting

May 2023
Dmitry Kosterev, BPA

Background

- Composite load model CMLD was developed in late 2000s and implemented in all grid simulators used in WECC in early 2010s
- The model structure was fixed with about 160 parameters
- Most of parameters, like motor data, were the same for all models
- The model has no expansion capabilities, if someone wanted to add a new component, e.g. Electric Vehicle Charger model, VFD model or single phase AC phasor model
- WECC has discussed the need for "modular" CMLD implementation, which will enable more efficient data management and capabilities to expand the model components
- PowerWorld and GE PSLF implemented "modular" CMLD in the their simulation packages
- This study aims to benchmark conventional and modular CMLD models in WECC-wide studies

Study Description

- Operational summer peak case
- Central Oregon area is high desert with summer peak temperatures in excess of 100F
- Rapid population and load growth
- Simulated 3-phase faults applied at EHV lines
- Remote substations
- Close substation

Study Description

- CMLD implementation
- Baseline: Zone level models currently used in WECC
- Modular CMLD representation, using same data
- Modular CMLD representation, inverse-time stalling implemented for AC motor performance model
- Modular CMLD representation, dynamic phasor model is used to represent single-phase motors
- Simulated
(A) 3-phase fault applied at adjacent 115-kV line, normal clearing 5-cycle near end and 6 cycle far end
(B) 3-phase fault applied at one of EHV lines in the area, normal clearing 3-cycle near end and 4-cycle far end

115-kV SubGrid Fault

Local Load MWs

Green (existing model) Red (modular model) Blue (modular model with time-dependent stalling)
Orange (modular model with phasor AC motor model)

All show similar FIDVR signature

AC Motor Speed - Phasor Model

AC Motor Model Voltage

AC Motor Model stalls fast and remains stalled

Main Grid EHV Fault

Main Grid Voltages

The following curves overlay nearly perfectly:
Green (existing model)
Blue (modular model)
AC motors stall
Orange (modular model with
phasor AC motor model, D=1)
AC Motors reaccelerate Red (modular model with phasor AC motor model, D=2)

Local Load Voltages

The following curves overlay nearly perfectly:
Green (existing model) Blue (modular model)

AC motors stall
Orange (modular model with
phasor AC motor model, D=1)
AC Motors reaccelerate Red (modular model with phasor AC motor model, D=2)

Local Load MWs

The following curves overlay nearly perfectly:
Green (existing model) Blue (modular model)

AC motors stall Orange (modular model with phasor AC motor model, $\mathrm{D}=1$)

AC Motors reaccelerate Red (modular model with phasor AC motor model, D=2)

AC Motor Model MWs

The following curves overlay nearly perfectly:
Green (existing model) Blue (modular model)

AC motors stall
Orange (modular model with phasor AC motor model, D=1)

AC Motors reaccelerate Red (modular model with phasor AC motor model, $\mathrm{D}=2$)

AC Motor Speed - Phasor Model

AC Motor Model Voltage

AC motors stall Orange (modular model with phasor AC motor model, $\mathrm{D}=1$)

AC Motors reaccelerate Red (modular model with phasor AC motor model, $\mathrm{D}=2$)

Motor Torque-Speed Curves

Motor Torque-Speed Curves

1-phase, $D=1$

Speed

Study Conclusions

- Modular CMLD representation seems to work in GE PSLF regional studies
- Modular CMLD representation allows replacement of LD1PAC performance model with MOT1PH dynamic phasor motor model
- For remote faults, dynamic phasor model MOT1PH shows motors reaccelerate after fault clearing, while performance model LD1PAC shows motor stalling for same fault
- There are performance difference for remote faults
- Assumptions on motor-driven load are critical
- MOT1PH with D=1 model runs a lot slower
- MOT1PH is not ready for WECC-wide studies

Study Recommendations

- Modular representation
- Ensure all grid simulators have modular CMLD representation available
- Perform comprehensive benchmarking of modular CMLD implementation
- Small test system
- Large scale WECC-wide studies
- Tools
- Update NERC LMDT tools to write modular CMLD
- Dynamic phasor model
- Ensure all grid simulators have dynamic phasor model implemented and integrated with modular CMLD
- Benchmark dynamic phasor models
- Validate dynamic phasor model parameters

Model Data

Original CMLD Model

```
_cmpldw -17 "NWV_MIX" 0:#9 mva=-1.000000/
    "Pmin" 5.000 "PQmin" 1.4327 "Vmin" 0.9300 "kVthresh" 40.000 /
    "Bss" 0.00 "Rfdr" 0.040 "Xfdr" 0.040 "Fb" 0.750 /
    "Xxf" 0.080 "TfixHS" 1.000 "TfixLS" 1.000 "LTC" 1 "Tmin" 0.900 "Tmax"
1.100 "step" 0.00625 /
    "Vmin" 1.025 "Vmax" 1.040 "Tdel" 30.00 "Ttap" 5.00 "Rcomp" 0.000
"Xcomp" 0.000 /
    "Fma" 0.145 "Fmb" 0.148 "Fmc" 0.052 "Fmd" 0.173 "Fel" 0.159 /
    "PFel" 1.000 "Vd1" 0.700 "Vd2" 0.500 "Frcel" 1.000 /
    "Pfs" -0.998 "P1e" 2.0 "P1c" 0.553 "P2e" 1.0 "P2c" 0.447 "Pfreq" 0.000/
        "Q1e" 2.0 "Q1c" -0.500 "Q2e" 1.0 "Q2c" 1.500 "Qfreq" -1.000 /
    "MtpA" 3 "MtpB" 3 "MtpC" 3 "MtpD" 1 /
    "Lfm" 0.750 "Rs" 0.040 "Ls" 1.800 "Lp" 0.120 "LppA" 0.104 /
    "Тро" 0.095 "Трро" 0.0021 "H" 0.100 "etrq" 0.000 /
    "Vtr1" 0.700 "Ttr1" 0.100 "Ftr1" 0.200 "Vrc1" 1.000 "Trc1" 99999.000 /
```

```
"Vtr2" 0.500 "Ttr2" 0.020 "Ftr2" 0.700 "Vrc2" 0.700 "Trc2" 0.100 /
    "Lfm" 0.750 "Rs" 0.030 "Ls" 1.800 "Lp" 0.190 "LppA" 0.140 /
    "Tpo" 0.200 "Tppo" 0.0026 "H" 0.500 "etrq" 2.000 /
    "Vtr1" 0.600 "Ttr1" 0.020 "Ftr1" 0.200 "Vrc1" 0.750 "Trc1" 0.050 /
    "Vtr2" 0.500 "Ttr2" 0.020 "Ftr2" 0.300 "Vrc2" 0.650 "Trc2" 0.050 /
    "Lfm" 0.750 "Rs" 0.030 "Ls" 1.800 "Lp" 0.190 "LppA" 0.140 /
    "Tpo" 0.200 "Tppo" 0.0026 "H" 0.100 "etrq" 2.000 /
    "Vtr1" 0.650 "Ttr1" 0.020 "Ftr1" 0.200 "Vrc1" 1.000 "Trc1" 9999.000 /
    "Vtr2" 0.500 "Ttr2" 0.020 "Ftr2" 0.300 "Vrc2" 0.650 "Trc2" 0.100 /
    "LfmD" 1.000 "CompPF" 0.980 /
    "Vstall" 0.450 "Rstall" 0.100 "Xstall" 0.100 "Tstall" 0.032 "Frst" 0.200
"Vrst" 0.950 "Trst" 0.300/
    "fuvr" 0.100 "vtr1" 0.600 "ttr1" 0.020 "vtr2" 0.000 "ttr2" 9999.000/
    "Vc1off" 0.500 "Vc2off" 0.400 "Vc1on" 0.600 "Vc2on" 0.500 /
    "Tth" 15.00 "Th1t" 0.700 "Th2t" 1.900 "tv" 0.025 /
    "DGtype" 2 "dgdatno" -110 "dgmbase" -0.9
```


Modular CMLD Model

_cmpldw2 -17 "NWV_MIX" 0:\#9 mva=-1.000000/
"Pmin" 5.0000 "PQmin" 1.4327 "Vmin" 0.9300 "kVthresh" 40.0000/ cmp_dist -10/
cmp_stat -100199 -1.0000 /
cmp_elec -100299 0.159 /
cmp_mot3 -100499 0.145 /
cmp_mot3 -100699 0.148 /
cmp_mot3 -100899 0.052 /
cmp_1pac -100988 0.173 /
cmp_der_a -110 1.0000 "dgmbase" -0.9000
© cmp mot3 $0.002 \overline{100}$ "H" 0.100499 : "lfm" 0.750000 "Ra" 0.040000 "Ls" 1.8000 "Lp" 0.120000 "Lpp" 0.104000 "Tpo" 0.095000 "Tppo"
"Ttr1" 0.100000 "Ftr1" 0.200000 "Vrc1" 1.000000 "Trc1" 99999.00 "Vtr2" 0.500000 "Ttr2" 0.020000 "Ftr2" 0.700000 "Vrc2" 0.700000 "Trc2" 0.100000
cmp_mot3 -100699: "Ifm" 0.750000 "Ra" 0.030000 "Ls" 1.8000 "Lp" 0.190000 "Lpp" 0.140000 "Tpo" 0.200000 "Tppo б. $002 \overline{600}$ "H" 0.500000 "Etrq" 2.0000 "Vtr1" 0.600000 /
"Ttr1" 0.020000 "Ftr1" 0.200000 "Vrc1" 0.750000 "Trc1" 0.050000 "Vtr2" 0.500000 "Ttr2" 0.020000 "Ftr2" 0.300000 "Vrc2
0.650000 "Trc2" 0.050000
cmp_mot3 -100899 : "lfm" 0.750000 "Ra" 0.030000 "Ls" 1.8000 "Lp" 0.190000 "Lpp" 0.140000 "Tpo" 0.200000 "Tppo"
"Ttr1" 0.020000 "Ftr1" 0.200000 "Vrc1" 1.000000 "Trc1" 9999.00 "Vtr2" 0.500000 "Ttr2" 0.020000 "Ftr2" 0.300000 "Vrc2"
_cmp_1pac -100988: "lfm" 1.000000 "CompPF" 0.980000 "Vstall" 0.450000 "Rstall" 0.100000 "Xstall" 0.100000 "Tstall" 2000 "Frst" 0.200000 "Vrst" 0.950000 "Trst" 0.300000 "fuvr" 0.100000 /
"vtr1" 0.600000 "ttr1" 0.020000 "vtr2" 0.0 "ttr2" 9999.00 "Vc1off" 0.500000 "Vc2off" 0.400000 "Vc1on" 0.600000 "Vc2on"
0.500000 "Tth" 15.0000 Th1t" 0.700000 / "Th2t" 1.9000 "Tv" 0.025000
_cmp_elec -100299: "pfel" 1.000000 "vd1" 0.700000 "vd2" 0.500000 "frcel" 1.000000
 "qfrq" -1.000000

"vmin" 0.930000 "vmax" 1.0400 "tdel" 30.0000 "ttap" 5.0000 "rcmp" 0.0 "xcmp" 0.0 "s1" 0.0 "s12" 0.0

Modular CMLD with Dynamic Motor Model

_cmpldw2 -17 "NWV_MIX" 0:\#9 mva=-1.000000/
"Pmin" 5.0000 "PQmin" 1.4327 "Vmin" 0.9300 "kVthresh" 40.0000/ cmp_dist -10 /
cmp_stat -100199 -1.0000 /
cmp_elec -100299 0.159 /
cmp_mot3 -100499 0.145 /
cmp_mot3 -100699 0.148 /
cmp_mot3 -100899 0.052 /
cmp_mo1ph -601 0.173/
cmp_der_a -110 1.0000 "dgmbase" -0.9000

cmp mo1ph -601:/

"pul" 1.0 "Rds" 0.0365 "Rqs" 0.0729 "Xm" 2.28 "Xcap" -2.78 "Xpd" 0.103 "Xpq" 0.149 / "Xr" 2.33 "TpO" 0.12 "H" 0.04 "D" 1.0 /
"Asat" 5.6 "Bsat" 0.72 "ratio" 1.22 "ndelt" 20.0 "wdelt" 2.0/
"Vc1off" 0.5 "Vc2off" 0.4 "Vc1on" 0.6 "Vc2on" 0.5 "Tth" 15.0 "Th1t" 0.30 "Th2t" 0.81 / "fuvr" 0.1 "uvtr1" 0.6 "ttrr1" 0.02 "uvtr2" 0.0 "ttr2" 9999.0 "tv" 0.025
cmp mot3 ${ }^{-100499: ~ " l f m " ~} 0.750000$ "Ra" 0.040000 "Ls" 1.8000 "Lp" 0.120000 "Lpp" 0.104000 "Tpo" 0.095000 "Tppo" $0.002 \overline{100}$ "H" 0.100000 "Etrq" 0.0 "Vtr1" 0.700000 /
"Ttr1" 0.100000 "Ftr1" 0.200000 "Vrc1" 1.000000 "Trc1" 99999.00 "Vtr2" 0.500000 "Ttr2" 0.020000 "Ftr2" 0.700000 "Vrc2 0.700000 "Trc2" 0.100000
cmp_mot3 -100699: "Ifm" 0.750000 "Ra" 0.030000 "Ls" 1.8000 "Lp" 0.190000 "Lpp" 0.140000 "Tpo" 0.200000 "Tppo 0.002 600 "H" 0.500000 "Etrq" 2.0000 "Vtr1" 0.600000 /
"Ttr1" 0.020000 "Ftr1" 0.200000 "Vrc1" 0.750000 "Trc1" 0.050000 "Vtr2" 0.500000 "Ttr2" 0.020000 "Ftr2" 0.300000 "Vrc2 ${ }^{0.650000}$ "Trc2" 0.050000
cmp_mot3 -100899: "|fm" 0.750000 "Ra" 0.030000 "Ls" 1.8000 "Lp" 0.190000 "Lpp" 0.140000 "Tpo" 0.200000 "Tppo" 0.002600 "H" 0.100000 "Etrq" 2.0000 "Vtr1" 0.650000 /
"Ttr1" 0.020000 "Ftr1" 0.200000 "Vrc1" 1.000000 "Trc1" 9999.00 "Vtr2" 0.500000 "Ttr2" 0.020000 "Ftr2" 0.300000 "Vrc2"
0.650000 "Trc2" 0.100000
_cmp_1pac - 100988 : "Ifm" 1.000000 "CompPF" 0.980000 "Vstall" 0.450000 "Rstall" 0.100000 "Xstall" 0.100000 "Tstall" $\overline{0} .032 \overline{0} 00$ "Frst" 0.200000 "Vrst" 0.950000 "Trst" 0.300000 "fuvr" 0.100000 /
"vtr1" 0.600000 "ttr1" 0.020000 "vtr2" 0.0 "ttr2" 9999.00 "Vc1off" 0.500000 "Vc2off" 0.400000 "Vc1on" 0.600000 "Vc2on "Th2t" 1.9000 "Tv" 0.025000
_cmp_elec -100299: "pfel" 1.000000 "vd1" 0.700000 "vd2" 0.500000 "frcel" 1.000000

"qfrq" -1.000000

'vmin" 0.930000 "vmax" 1.0400 "tdel" 30.0000 "ttap" 5.0000 "rcmp" 0.0 "xcmp" 0.0 "s1" 0.0 "s12" 0.0

Dynamic Motor Data

- Damping coefficient of $\mathrm{D}=1$ is needed to represent constant torque load

$$
T_{m}=P_{\text {mech init }} * \omega_{r}^{D-1}
$$

- Thermal relay model data needs to be modified
- Performance model calculates heat as I2R, where R is the resistance of stalled motor and includes both stator and rotor resistance
- Phasor model calculates heat as I2R too, but R is the stator resistance only. Stator resistance is 43% of the combined stator plus rotor resistance, therefore "Th1T" and "Th2t" are scaled by 43% in dynamic phasor model

